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The problem and related works

Distribution dependent stochastic differential equations (DDSDEs), also called McKean-Vlasov or
mean-field SDEs, is of the form:

dX; = bi(X;, Zx,)dr + o¢(Xe, L, )dWs, Xo = € € IP(Q — RY, o, P).

where W is a Brownian motion and .%x, denotes the law of X;.

@ F.-Y. Wang, Distribution dependent SDEs for Landau type equations, SPA, 2018.

@ D. Bafos, The Bismut-Elworthy-Li formula for mean-field stochastic differential equations,
AIHP, 2018.

@ PP. Ren and F.-Y. Wang, Bismut formula for Lions derivative of distribution dependent
SDEs and applications, JDE, 2019.

@ M. Réckner and X.C. Zhang, Well-posedness of distribution dependent SDEs with singular
drifts, Bernoulli, 2021.

@ W. Liu, Y.L. Song, J.L. Zhai and T.S. Zhang, Large and moderate deviation principles for
McKean-Vlasov SDEs with jumps, PA, 2022.

@ X. Huang and F.-Y. Wang, Regularities and exponential ergodicity in entropy for SDEs
driven by distribution dependent noise, arXiv:2209.14619.

@ V. Barbu and M. Réckner, Uniqueness for nonlinear Fokker-Planck equations and for
McKean-Vlasov SDEs: The degenerate case, JFA, 2023.
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The problem and related works

DDSDEs driven by fractional Brownian motion (FBM) B with Hurst parameter H € (0, 1):

dX; = bi(Xy, Lx,)dt + oo (Fx, )AB, Xo =€ € IP(Q — R, %, P).

@ X.L. Fan, X. Huang, Y.Q. Suo and C.G. Yuan, Distribution dependent SDEs driven by
fractional Brownian motions, SPA, 2022.

@ X.L. Fan, T. Yu and C.G. Yuan, Asymptotic behaviors for distribution dependent SDEs
driven by fractional Brownian motions, SPA, 2023.

@ L. Galeati, FA. Harang and A. Mayorcas, Distribution dependent SDEs driven by additive
fractional Brownian motion, PTRF, 2023.

@ G.J. Shen, J. Xiang and J.L. Wu, Averaging principle for distribution dependent stochastic
differential equations driven by fractional Brownian motion and standard Brownian motion,
JDE, 2022.
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The problem and related works

Our concerned equation:
dX, = by(X;, x,)dt + oidBY + 5,( L, )dBI | Xo = €, 1)

where b : [0,7] x R x Z(RY) -+ RY,0: [0,7T] - R?®R4,5: [0,7] x Z(R!) — R @ R?, ¢ is an
R<-valued random variable, and B, B! are respectively two independent FBMs with Hurst

parameters H € (0, 1) and A € (1/2, 1) independent of ¢, and the stochastic integral can be
regarded as the Wiener integral.

@ Ad-FBM (B)cior) = (B, Bi")cj0,7) With H € (0, 1) is a centered, H-self similar
Gaussian process with the covariance function E(B'B) = Ry (1, 5)d;j, where

1
Ru(t,s) :== > <t2H+52H - |t—s|2H> , t,s €10,T].

@ The FBM generalizes the standard Wiener process (H = 1/2) and has stationary
increments. However, the increments are correlated with a power law correlation decay,
which asserts the FBM is a non-Markovian process that is the dominant feature of
equation (1).
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The problem and related works

Our aim:
0 To prove the well-posedness of (1).

@ To investigate the regularity for (1).

For the second aim, we will study the regularity of the maps
wr Pru, 1€0,T),

where P} := %, for X, solving (1) with initial distribution %, = 1 € 2,(R?).

Observe that a probability measure is determined by integrals of f € %, (R9), it suffices to
investigate the regularity of the functionals

po ) w) = [ FAPT). £ € B(E). 1€ 0.7)

More precisely, with regards to equation (1), we address the following question:

(Question) Under what conditions does the functional P,f have dimensional-free Harnack
inequalities and Bismut formulas?
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The problem and related works

Our motivation:

@ D. Bafos (AIHP, 2018) investigated the sensitivity of prices of options w.r.t. the initial value
of the underlying asset price, and pointed out that the Bismut formula gives a better
approximation of the sensitivity.

@ The Harnack inequality may imply the gradient estimate and entropy estimate.

@ X.L. Fan, X. Huang, Y.Q. Suo and C.G. Yuan (SPA, 2022) shown that for distribution-free
noise (& = 0 in equation (1), i.e. dX; = b,(X;, %, )dt + o,dBH, X, = &), Bismut formulas for
P,f are established by using Malliavin calculus. However, for distribution dependent noise,
these formulas are still open.
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Well-posedness

DDSDE driven by two independent fractional Brownian motions B# and B

dX, = bi(Xi, Z,)dt + ovdB! + &,( L, )dB, Xo =€, E)
where H € (0,1),H € (1/2,1), € € I’(Q — R%, %, P) with p > 1, and the coefficients
b:[0,T] xR x Z(R?) - RY,5:[0,T] = R!@RY, 5 :[0,T] x Z(RY) — R @ R? are

measurable functions.

(H1) There exists a non-decreasing function «. such that for every
t€[0,7],x,y € RY v € Py(RY),

[br(x, 1) = be (v, V)| < wel(|x = [ + Wp(,0)), N|Ge(1) = G:(W)|| < meWp(p, ),

and

[54(0,80)| + lloell + 115+(do) || < rr-

For any p > 1, let S”([0, T]) be the space of R¢-valued, continuous (F1)ic[0,1)-adapted
processes 1 on [0, T] satisfying

1/p
olls == (E sup W) < .
t€[0,7]
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Well-posedness

Definition

A stochastic process X = (X;)o</<r ON R? is called a solution of (2), if X € SP([0, T]) and P-a.s.,

t t t -
X,:§+/ bs(Xs,fxx)ds—l—/ JsdBf—&—/ &s(x,)dB | 1€ [0, T).
0 0 0

@ Note that 0. and 6. (%) are both deterministic functions, then fo’ osdBf and
fo’ 55(Zx,)dBH can be regarded as Wiener integrals w.r.t. fractional Brownian motions.

Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Suppose that ¢ € IP(Q — R?, Z, P) with p > 1 and one of the following conditions:

() He (1/2,1), b,0,5 satisfy (H1) and p > max{1/H, 1/H};

() H e (0,1/2),b,5 satisfies (H1), o, does not depend on rand p > 1/H.
Then Eq. (2) has a unique solution X € S?([0, 7]). Moreover, let (X{*)c[o,7] be the solution to (2)
with Zx, = pu € #»(R’) and denote Pfu = Zyp,1 € [0,T]. Then it holds

W, (P p, Pfv) < C])’,["K_’HW,,(;L, V), v € Py(RY).
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Well-posedness

Sketch of the proof

For any 1. € C([0,T], #7,), consider
dX; = by(Xy, p)dt + o,dBH? + &,(p,)dl?f" t € [0,T],Xo = &. (Denote its solution as X**%)

@ To show E(sup,e[oﬂ |X,‘"§|P> < oo.

@ Define the mapping ®¢ : C([0, 7], Z,(R%)) — C([0, T], 2,(R?)) as

O (1) = Lypus, 1€0,T)-

To show 1
pkg((bg(tu‘):q)é(y)) < §p>\0(lu" V)7 w, v € Eé:

where )\ is a proper constant, and E¢ := {u € C([0, T]; 2,(R?)) : o = % } is equipped
with the complete metric

Pro(s i) == sup e MW (ve, i), i, € E.
t€[0,7]

@ Using the Banach fixed point theorem, we conclude that
‘bf(ﬂ) = M, te [OvT]

has a unique solution . € E£.
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@ Main tool: (The Hardy-Littlewood inequality) Let 1 < p < ¢ < co and é = % —a. If

f R4 — Rbelongs to L7 (0, o), then Ig, f(x) converges absolutely for almost every x, and
moreover

16+f | 0,00) < Cpgllfllir0,00)
holds for some positive constant C, 4. Here, the left-sided fractional Riemann-Liouville
integral of f of order « is defined as

oy L [T O
B0 = oy | e

Under the same conditions as the theorem above, we obtain that for any 7 € [0, 7],

E( sup s’ — of \p) < G it Wy (V)
s€[0,1]

Here we have set o}’ := [; &, (Pr)dBH for all s € [0,T] and uw € 2 (RY).
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The non-degenerate case: Log-Harnack inequality

DDSDE:

dX, = by(X;, x,)dt + odBf' + &f(xx)déflv Xo=¢.

(H1’) Forevery t € [0,T], by(-,-) € CHUO(RY x 22,(R?)). Moreover, there exists a
non-decreasing function . such that for any ¢ € [0, 7], x,y € R?, pu,v € P,(RY),

(-, ) @)l + 1D i (6, Y (W) O)| < #ry 15e() = G:()]| < KW (s, v),

and [b:(0, 60)| + llot |l + [|5+(0)|| < rs-
(H2) There exists a constant # > 0 such that
(i) foranys,s€[0,T], x,y,21,22 € RY, p,v € FH(RY),

V1 (:, 1) () = Vbs (-, ) W) + Db (x, ) () (21) = D bs (3, ) (1) (22)]
SRt =8l + k= y1P + o — 2 + Wp(u,v)),

where oo € (H —1/2,1] and 8,v € (1 — 1/(2H), 1].
(ii) o is invertible and o—! is Holder continuous of order § € (H — 1/2, 1]:

lo="(t) = o~ ) < &lt—sI°, 1,5 €[0,T].
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The non-degenerate case: Log-Harnack inequality

Theorem (Fan-Huang-Ling, arXiv:2304.00768)
Consider Eq. (2). If one of the two following assumptions holds:

() H e (1/2,1),b,0,5 satisfy (H1°), (H2) and p > 2(1 + 3);

(Il H € (0,1/2),b,5 satisfies (H1), o; does not depend on 7 and p > 2.
Then for any ¢ € (0, 7], u, v € Z,(R?%) and 0 < f € B, (R?),

(Prlogf)(v) < log(Pif)(p) + w(H),
where

CT,K;,R,H,I:I (1 +WP(“’ V)zﬁ + ﬂ%) WP(“: V)27 H e (1/27 l):
w(H) =

Cr o mit (1 + ,%) Wy (u, )2, H € (0,1/2).
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The non-degenerate case: Log-Harnack inequality

The log-Harnack inequality obtained above is equivalent to the following entropy-cost estimate
Ent(P{ v|Pfp) < w(H), 1 € (0,T],p,v € Zp(RY),

where Ent(P; v|Py 1) is the relative entropy of P; v with respect to P} and p is given as in the
theorem above.

Facts needed in the proof of the theorem:

@ 7 : the reproducing kernel Hilbert space
Kj « H — L2([0,T),RY), Ky : 12([0, T),R) — IiF'/(L2(10, 7], RY)), Ry = Ky 0 K.

@ W is a d-dimensional Wiener process such that

t
Bﬁ:/ Ku(t,s)dWs, t€[0,T].
0
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The non-degenerate case: Log-Harnack inequality

Sketch of the proof

@ For fixed 7y € (0, 7], consider the following coupling DDSDE: ¢ € [0, 7],

1 PR
dy, = [b,(X,“,P,*u) 4L I—(X(’)‘ —X§ + o — g;g)} dr 4 o,dB? + 5,(P;v)dB, Yo =X4. (3)
0

@ Let¥, =Y, — o and rewrite (3) as

d¥; = by(Y; + o/, Pfv)dr + o,dB, 1 € [0,10], Yo = Yo = XY,

where ' . .
B .= B f/ o7 ¢ds = / Ku(t,s) (dWx —K;' </ Ufl(rdr> (s)dx)
0 0 0

with 1
- —(X§ — Xg + aly — o)-
I g

Cs = bs(Ys,P;kV) - bS(Xé—LvP;M)
@ &y, Ipiogpio = Ly |p7z,0» Where X := X¥ — o¥ satisfies SDE
dX? = by(XY + 0¥, P}v)dt + o:dBE | 1 € [0,10], X§ =X{.
Then, the law of ¥;, = ¥;, + o}/ under RA04PH0 s the same as one of Xy =X¢ + of
under P10, )
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The non-degenerate case: Bismut formula

Bismut formula for the L-derivative of (2):

Forevery t € (0,T], u € Z,(R?) and ¢ € I’(R? — R, ), we are to find an integrable random
variable M;(u, ¢) such that

Dg(Pf) (1) = E (F(X[')Mi(n, 8)) , [ € Bp(RY).

For any u € 2,(R%), let (X!"):(0,7) be the solution to (2) with fx{; =pand Pu = ,%X’u for
everyr e [0,T].

Forany e € [0,1] and ¢ € IP(R? — RY 1), let X/'=¢ denote the solution of (2) with

X)=? = (1d + ep) (XL, pre, g = Liared)alh)-

Introduce the spatial derivative of X! along ¢:
He,p XM
VX! = lim = 1€ [0,T], ¢ € LP(RY = RY, ).
€

e—0

(H3) There exists a non-decreasing function . such that

ID 6, (1)(x)| < ki, t€[0,T], x €RY, € Zp(RY).
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The non-degenerate case: Bismut formula

Lemma

Assume that (H1’), (H3) hold and o, does not depend on ¢ if H € (0, 1/2). For any u € 22,(R%)
and ¢ € I?(R? — R?, 1) with p > max{1/H, 1/H} it H € (1/2,1) orp > 1/Hif H € (0,1/2), then
the following assertions hold.

(i) VX! exists in L7 (Q — C([0, T]; R?),P) such that V ;X" is the unique solution of the following
linear SDE

4G} = |V gobi(e, L) () + (ED 00, ) (L) (XE), G) ) |, _yp |

+E(D16 (L) (X}, GP)dBE, GY = o(X4),

and
B( s IVoX!P) <y umallélpg:
(tE[O,T] o2y p,T,x,H,H LP ()
(ii) It holds
Hep p
limE( sup & Oy, ):01
el0 s€[0,7] €

where A. is defined as

A= [ (BIOH,PE X0, VX, 0BE) s € 71
0
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The non-degenerate case: Bismut formula

Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Consider Eq. (2). If one of the two following assumptions holds:
() He (1/2,1),b,0,5 satisfy (H1’), (H2) and (H3);
() He(0,1/2),b,5 satisfies (H1’), (H3) and o, does not depend on ¢,

then for any ¢ € (0, T],f € B»(RY), u € P,(RY) and ¢ € LP(R? — RY, p) with p > 2(1 + B) if
He (1/2,1)0orp > 2if H € (0,1/2), D5 (Pf)(u) exists and satisfies

D) =& (xt) [ (' ([ o 0nsar) 0w )) @

where Y. . is given by

t—r

Tr,t
t

:qs(X[)‘) + A
t

+ 98P ) (o) - T )

+ ]E[<DLbr(x’ )(P:(H‘)(Xy)?v¢xf>]|x:)(#a 0<r<t<T

with A. defined in the lemma above.
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The non-degenerate case: Bismut formula
(i) The term K, ! (fo‘ a,‘lT,’,dr> (s) on the right-hand side of (4) can rewrite as follows

1_ 1_
5 o e

—1
+ o5 Y 0

dr+

1
1y H—1 _
(H—g)s 2 |l z”oxl‘T.\,,
I'(3—H) H—1

1
(s—r)2 +H

=ilg [ _=i 1 1
K T, — —1__—1 H . —1 H
H (/0 o hfdr)(s) T»&‘,I‘/g (o ( a, )r2 dr + ./;)v (Ys5,:—Yr1)o, rzdr:| ,H € (%, 1),
s—r

1 1
2t (s—r)2t”
1
R I
= ls (; 1 - dr7 H E (07 %)
T'(3—H) (s—ry2+H

(ii) The estimate of the L-derivative: for any ¢ € (0, 7],/ € B,(R?), u € P»(RY),
1

10X < Cro i (1+ 77 ) (PP )0)

where C. . - 4 7 is @ positive constant which is independent of # when H € (0,1/2), and
p>2(1+p)ifHE (1/2,1)0rp >2if H € (0,1/2).
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The degenerate case: Log-Harnack inequality

Let A and B be two matrices of order m x m and m x I, we now consider the following distribution
dependent degenerate SDE:

ax" = (ax" + Bx yar, (5)
AX = by (X, Lx,)dt + ordBY! + (B

t

where X, = (X", XY, b : [0, 7] x R"+ x 22,(R"*+!) — R!, (1) is an invertible I x -matrix for
every t € [0,7T], 5 : [0,T] x Z,(R"!) — R! @ R! are measurable.

To establish the log-Harnack inequality, we let

_ ! S(t - S) —sA * —SA*
U = —a ¢ BB*e ds > 0(1)Lpxm, t € (0,T], (6)
0

where ¢ € C([0, T]) satisfies £(r) > 0 for any r € (0,7] and Ly x is the m x m identity matrix.
It is obvious that U, is invertible with ||U; || < 1/£(:) for every r € (0, T].
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The degenerate case: Log-Harnack inequality

Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Consider Eq. (5). Assume (6) and if one of the two following assumptions holds:

() He (1/2,1), b,0,0 satisfy (H1’) and (H2) withd =m + [, and p > 2(1 + B3);

(Il H € (0,1/2),b,5 satisfies (H1) with d = m + I, o, does not depend on 7 and p > 2.
Then for any ¢ € (0, 7], u, v € Z,(R"*!) and 0 < f € B, (R" 1),

(Prlogf)(v) < log(Pif)(n) + X (H),

where

) CT,N,F@, f1 ( +WP(“7 ) + IZLH + (21(,) + W)WP(FQ V)27 H e (1/271)7
X(H) =

CT,,-;,HH( + 2 + [2(,) W)Wp(%l’)zy H € (0,1/2).
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The degenerate case: Bismut formula

Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Consider Eq. (5). Assume (6) and if one of the two following assumptions holds:
() He (1/2,1), b, 0,5 satisfy (H1’), (H2) and (H3);
(Il H € (0,1/2),b,5 satisfies (H1’), (H3) with d = m + [, o; does not depend on ¢,

then for any ¢ € (0,T],f € B,(R™t!), ¢ € LP(R™H — R+ 1) and p € F,(R™) with
p>2(1+p)ifHe (1/2,1)orp >2ifH € (0,1/2), D(LP(PTf)(u) exists and satisfies

Dy =& (xt) [ (' ([ o onsar) aw.))

where ©. . is defined as
©s0 = Vbs(-, P§ 1) (XE s, + E[(D s (x, ) (P ) (XE), Vo XE N |—xpr — (21)/ (5).

with
Ry = (eSA(;S(l)(Xé‘) 4 / Tebnap (¢<2) (X5 + E(r) + A,) dr, ¢® (X&) + E4(s) + As) ,
0
=) == SO0+ A - L2y tg0 o)
(t )

2

Bre A" U—l/ _’AB[ - ¢(2)(X“)——A,+A}
0 0
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The degenerate case: Bismut formula

Remark
The entropy-cost and intrinsic derivative estimates:

Forany r € (0, 7], u, v € Z,(R?) and f € B,(RY),
Ent(Pyv|Pf ) < x(H)

and

11 1 . P
ID“PHW g < Cr i (1 t ot gt Mm) ()

where C. . - 4 7 i @ positive constant which is independent of # when H € (0,1/2), and
p>2(1+p)ifH e (1/2,1)orp >2if H € (0,1/2).

To guarantee (6) holds, one needs to impose some non-degeneracy condition on the matrix B.
For instance, assume the following Kalman rank condition:

Rank[B,AB, - -- ,A*B] = m 7

holds for some integer number k € [0, m — 1] (in particular, if k = 0, (7) reduces to Rank[B] = m),
then (6) is satisfied with £(r) = C(z A 1)?*! for positive constant C.
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Further problems and main references

Further problems

@ Well-posedness in multiplicative case
@ Chaos propogation

Main references

o D. Bafos, The Bismut-Elworthy-Li formula for mean-field stochastic differential equations,
AIHP, 2018.

e J.H. Bao, P.P. Ren and F.-Y. Wang, Bismut formula for Lions derivative of distribution-path
dependent SDEs, JDE, 2021.

e X. Huang and F.-Y. Wang, Regularities and exponential ergodicity in entropy for SDEs
driven by distribution dependent noise, arXiv:2209.14619.

© PP Ren and F-Y. Wang, Bismut formula for Lions derivative of distribution dependent
SDEs and applications, JDE, 2019.

e F.-Y. Wang, Distribution dependent SDEs for Landau type equations, SPA, 2018.

Q F.-Y. Wang and X.C. Zhang, Derivative formulae and applications for degenerate diffusion
semigroups, JMPA, 2013.
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Thank you very much for your kind attention!
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