# Regularities for distribution dependent SDEs with fractional noises 

Xiliang Fan<br>Joint work with Xing Huang and Zewei Ling

Anhui Normal University
The 18th Workshop on Markov Processes and Related Topics, Tianjin University, July 30-August 2, 2023

## Outline

(1) The problem and related works
(2) Main results of DDSDE

- Well-posedness
- The log-Harnack inequalities and Bismut formulas
- The non-degenerate case
- The degenerate case
(3) Further problems and main references


## The problem and related works

Distribution dependent stochastic differential equations (DDSDEs), also called McKean-Vlasov or mean-field SDEs, is of the form:

$$
\mathrm{d} X_{t}=b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} t+\sigma_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} W_{t}, \quad X_{0}=\xi \in L^{p}\left(\Omega \rightarrow \mathbb{R}^{d}, \mathscr{F}_{0}, \mathbb{P}\right) .
$$

where $W$ is a Brownian motion and $\mathscr{L}_{X_{t}}$ denotes the law of $X_{t}$.

- F.-Y. Wang, Distribution dependent SDEs for Landau type equations, SPA, 2018.
- D. Baños, The Bismut-Elworthy-Li formula for mean-field stochastic differential equations, AIHP, 2018.
- P.P. Ren and F.-Y. Wang, Bismut formula for Lions derivative of distribution dependent SDEs and applications, JDE, 2019.
- M. Röckner and X.C. Zhang, Well-posedness of distribution dependent SDEs with singular drifts, Bernoulli, 2021.
- W. Liu, Y.L. Song, J.L. Zhai and T.S. Zhang, Large and moderate deviation principles for McKean-Vlasov SDEs with jumps, PA, 2022.
- X. Huang and F.-Y. Wang, Regularities and exponential ergodicity in entropy for SDEs driven by distribution dependent noise, arXiv:2209.14619.
- V. Barbu and M. Röckner, Uniqueness for nonlinear Fokker-Planck equations and for McKean-Vlasov SDEs: The degenerate case, JFA, 2023.


## The problem and related works

DDSDEs driven by fractional Brownian motion (FBM) $B^{H}$ with Hurst parameter $H \in(0,1)$ :

$$
\mathrm{d} X_{t}=b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} t+\sigma_{t}\left(\mathscr{L}_{X_{t}}\right) \mathrm{d} B_{t}^{H}, \quad X_{0}=\xi \in L^{p}\left(\Omega \rightarrow \mathbb{R}^{d}, \mathscr{F}_{0}, \mathbb{P}\right) .
$$

- X.L. Fan, X. Huang, Y.Q. Suo and C.G. Yuan, Distribution dependent SDEs driven by fractional Brownian motions, SPA, 2022.
- X.L. Fan, T. Yu and C.G. Yuan, Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions, SPA, 2023.
- L. Galeati, F.A. Harang and A. Mayorcas, Distribution dependent SDEs driven by additive fractional Brownian motion, PTRF, 2023.
- G.J. Shen, J. Xiang and J.L. Wu, Averaging principle for distribution dependent stochastic differential equations driven by fractional Brownian motion and standard Brownian motion, JDE, 2022.


## The problem and related works

Our concerned equation:

$$
\begin{equation*}
\mathrm{d} X_{t}=b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}+\tilde{\sigma}_{t}\left(\mathscr{L}_{X_{t}}\right) \mathrm{d} \tilde{B}_{t}^{\tilde{H}}, \quad X_{0}=\xi \tag{1}
\end{equation*}
$$

where $b:[0, T] \times \mathbb{R}^{d} \times \mathscr{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d}, \sigma:[0, T] \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}, \tilde{\sigma}:[0, T] \times \mathscr{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}, \xi$ is an $\mathbb{R}^{d}$-valued random variable, and $B^{H}, \tilde{B}^{\tilde{H}}$ are respectively two independent FBMs with Hurst parameters $H \in(0,1)$ and $\tilde{H} \in(1 / 2,1)$ independent of $\xi$, and the stochastic integral can be regarded as the Wiener integral.

- A $d$-FBM $\left(B_{t}^{H}\right)_{t \in[0, T]}=\left(B_{t}^{H, 1}, \cdots, B_{t}^{H, d}\right)_{t \in[0, T]}$ with $H \in(0,1)$ is a centered, $H$-self similar Gaussian process with the covariance function $\mathbb{E}\left(B_{t}^{H, i} B_{s}^{H, j}\right)=R_{H}(t, s) \delta_{i, j}$, where

$$
R_{H}(t, s):=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right), t, s \in[0, T] .
$$

- The FBM generalizes the standard Wiener process $(H=1 / 2)$ and has stationary increments. However, the increments are correlated with a power law correlation decay, which asserts the FBM is a non-Markovian process that is the dominant feature of equation (1).


## The problem and related works

## Our aim:

(1) To prove the well-posedness of (1).
(2) To investigate the regularity for (1).

For the second aim, we will study the regularity of the maps

$$
\mu \mapsto P_{t}^{*} \mu, \quad t \in[0, T],
$$

where $P_{t}^{*} \mu:=\mathscr{L}_{X_{t}}$ for $X_{t}$ solving (1) with initial distribution $\mathscr{L}_{X_{0}}=\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$.
Observe that a probability measure is determined by integrals of $f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right)$, it suffices to investigate the regularity of the functionals

$$
\mu \mapsto\left(P_{t} f\right)(\mu):=\int_{\mathbb{R}^{d}} f \mathrm{~d}\left(P_{t}^{*} \mu\right), f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right), t \in[0, T] .
$$

More precisely, with regards to equation (1), we address the following question:
(Question) Under what conditions does the functional $P_{t} f$ have dimensional-free Harnack inequalities and Bismut formulas?

## The problem and related works

## Our motivation:

- D. Baños (AIHP, 2018) investigated the sensitivity of prices of options w.r.t. the initial value of the underlying asset price, and pointed out that the Bismut formula gives a better approximation of the sensitivity.
- The Harnack inequality may imply the gradient estimate and entropy estimate.
- X.L. Fan, X. Huang, Y.Q. Suo and C.G. Yuan (SPA, 2022) shown that for distribution-free noise ( $\tilde{\sigma}=0$ in equation (1), i.e. $\mathrm{d} X_{t}=b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}, \quad X_{0}=\xi$ ), Bismut formulas for $P_{t} f$ are established by using Malliavin calculus. However, for distribution dependent noise, these formulas are still open.


## Well-posedness

DDSDE driven by two independent fractional Brownian motions $B^{H}$ and $\tilde{B}^{\tilde{H}}$ :

$$
\begin{equation*}
\mathrm{d} X_{t}=b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}+\tilde{\sigma}_{t}\left(\mathscr{L}_{X_{t}}\right) \mathrm{d} \tilde{B}_{t}^{\tilde{H}}, \quad X_{0}=\xi \tag{2}
\end{equation*}
$$

where $H \in(0,1), \tilde{H} \in(1 / 2,1), \xi \in L^{p}\left(\Omega \rightarrow \mathbb{R}^{d}, \mathscr{F}_{0}, \mathbb{P}\right)$ with $p \geq 1$, and the coefficients $b:[0, T] \times \mathbb{R}^{d} \times \mathscr{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d}, \sigma:[0, T] \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}, \tilde{\sigma}:[0, T] \times \mathscr{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d}$ are measurable functions.
(H1) There exists a non-decreasing function $\kappa$. such that for every $t \in[0, T], x, y \in \mathbb{R}^{d}, \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$,

$$
\left|b_{t}(x, \mu)-b_{t}(y, \nu)\right| \leq \kappa_{t}\left(|x-y|+\mathbb{W}_{p}(\mu, \nu)\right), \quad\left\|\tilde{\sigma}_{t}(\mu)-\tilde{\sigma}_{t}(\nu)\right\| \leq \kappa_{t} \mathbb{W}_{p}(\mu, \nu),
$$

and

$$
\left|b_{t}\left(0, \delta_{0}\right)\right|+\left\|\sigma_{t}\right\|+\left\|\tilde{\sigma}_{t}\left(\delta_{0}\right)\right\| \leq \kappa_{t} .
$$

For any $p \geq 1$, let $\mathcal{S}^{p}([0, T])$ be the space of $\mathbb{R}^{d}$-valued, continuous $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$-adapted processes $\psi$ on $[0, T]$ satisfying

$$
\|\psi\|_{\mathcal{S}^{p}}:=\left(\mathbb{E} \sup _{t \in[0, T]}\left|\psi_{t}\right|^{p}\right)^{1 / p}<\infty
$$

## Well-posedness

## Definition

A stochastic process $X=\left(X_{t}\right)_{0 \leq t \leq T}$ on $\mathbb{R}^{d}$ is called a solution of (2), if $X \in \mathcal{S}^{p}([0, T])$ and $\mathbb{P}$-a.s.,

$$
X_{t}=\xi+\int_{0}^{t} b_{s}\left(X_{s}, \mathscr{L}_{X_{s}}\right) \mathrm{d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}^{H}+\int_{0}^{t} \tilde{\sigma}_{s}\left(X_{s}\right) \mathrm{d} \tilde{B}_{s}^{\tilde{H}}, \quad t \in[0, T] .
$$

- Note that $\sigma$. and $\tilde{\sigma}$. $\left(\mathscr{L}_{X .}\right)$ are both deterministic functions, then $\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}^{H}$ and $\int_{0}^{t} \tilde{\sigma}_{s}\left(\mathscr{L}_{X_{s}}\right) \mathrm{d} \tilde{B}_{s}^{\tilde{H}}$ can be regarded as Wiener integrals w.r.t. fractional Brownian motions.


## Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Suppose that $\xi \in L^{p}\left(\Omega \rightarrow \mathbb{R}^{d}, \mathscr{F}_{0}, \mathbb{P}\right)$ with $p \geq 1$ and one of the following conditions:
(I) $H \in(1 / 2,1), b, \sigma, \tilde{\sigma}$ satisfy (H1) and $p>\max \{1 / H, 1 / \tilde{H}\}$;
(II) $H \in(0,1 / 2), b, \tilde{\sigma}$ satisfies (H1), $\sigma_{t}$ does not depend on $t$ and $p>1 / \tilde{H}$.

Then Eq. (2) has a unique solution $X \in \mathcal{S}^{p}([0, T])$. Moreover, let $\left(X_{t}^{\mu}\right)_{t \in[0, T]}$ be the solution to (2) with $\mathscr{L}_{X_{0}}=\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and denote $P_{t}^{*} \mu=\mathscr{L}_{X_{t}^{\mu}}, t \in[0, T]$. Then it holds

$$
\mathbb{W}_{p}\left(P_{t}^{*} \mu, P_{t}^{*} \nu\right) \leq C_{p, T, \kappa, \tilde{H}} \mathbb{W}_{p}(\mu, \nu), \quad \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right) .
$$

## Well-posedness

## Sketch of the proof

For any $\mu \in C\left([0, T], \mathscr{P}_{p}\right)$, consider

$$
\mathrm{d} X_{t}=b_{t}\left(X_{t}, \mu_{t}\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}+\tilde{\sigma}_{t}\left(\mu_{t}\right) \mathrm{d} \tilde{B}_{t}^{\tilde{H}}, \quad t \in[0, T], X_{0}=\xi . \text { (Denote its solution as } X_{t}^{\mu, \xi} \text { ) }
$$

- To show $\mathbb{E}\left(\sup _{t \in[0, T]}\left|X_{t}^{\mu, \xi}\right|^{p}\right)<\infty$.
- Define the mapping $\Phi^{\xi}: C\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right) \rightarrow C\left([0, T], \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$ as

$$
\Phi_{t}^{\xi}(\mu)=\mathscr{L}_{X_{t}^{\mu, \xi}}, \quad t \in[0, T]
$$

To show

$$
\rho_{\lambda_{0}}\left(\Phi^{\xi}(\mu), \Phi^{\xi}(\nu)\right)<\frac{1}{2} \rho_{\lambda_{0}}(\mu, \nu), \quad \mu, \nu \in E^{\xi}
$$

where $\lambda_{0}$ is a proper constant, and $E^{\xi}:=\left\{\mu \in C\left([0, T] ; \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right): \mu_{0}=\mathscr{L}_{\xi}\right\}$ is equipped with the complete metric

$$
\rho_{\lambda_{0}}(\nu, \mu):=\sup _{t \in[0, T]} \mathrm{e}^{-\lambda_{0} t} \mathbb{W}_{p}\left(\nu_{t}, \mu_{t}\right), \quad \mu, \nu \in E^{\xi} .
$$

- Using the Banach fixed point theorem, we conclude that

$$
\Phi_{t}^{\xi}(\mu)=\mu_{t}, \quad t \in[0, T]
$$

has a unique solution $\mu \in E^{\xi}$.

## Remark

- Main tool: (The Hardy-Littlewood inequality) Let $1<p<q<\infty$ and $\frac{1}{q}=\frac{1}{p}-\alpha$. If $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ belongs to $L^{p}(0, \infty)$, then $I_{0+}^{\alpha} f(x)$ converges absolutely for almost every $x$, and moreover

$$
\left\|I_{0+}^{\alpha} f\right\|_{L^{q}(0, \infty)} \leq C_{p, q}\|f\|_{L^{p}(0, \infty)}
$$

holds for some positive constant $C_{p, q}$. Here, the left-sided fractional Riemann-Liouville integral of $f$ of order $\alpha$ is defined as

$$
I_{0+}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} \frac{f(y)}{(x-y)^{1-\alpha}} \mathrm{d} y
$$

## Remark

Under the same conditions as the theorem above, we obtain that for any $t \in[0, T]$,

$$
\mathbb{E}\left(\sup _{s \in[0, t]}\left|\varrho_{s}^{\mu}-\varrho_{s}^{\nu}\right|^{p}\right) \leq C_{p, T, \kappa, \tilde{H}} t^{p \tilde{H}} \mathbb{W}_{p}(\mu, \nu)^{p}
$$

Here we have set $\varrho_{s}^{\mu}:=\int_{0}^{s} \tilde{\sigma}_{r}\left(P_{r}^{*} \mu\right) \mathrm{d} \tilde{B}_{r}^{\tilde{H}}$ for all $s \in[0, T]$ and $\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right)$.

## The non-degenerate case: Log-Harnack inequality

## DDSDE:

$$
\mathrm{d} X_{t}=b_{t}\left(X_{t}, X_{t}\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}+\tilde{\sigma}_{t}\left(X_{t}\right) \mathrm{d} \tilde{B}_{t}^{\tilde{H}}, \quad X_{0}=\xi .
$$

## Assumptions

(H1') For every $t \in[0, T], b_{t}(\cdot, \cdot) \in C^{1,(1,0)}\left(\mathbb{R}^{d} \times \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)\right)$. Moreover, there exists a non-decreasing function $\kappa$. such that for any $t \in[0, T], x, y \in \mathbb{R}^{d}, \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$,

$$
\left\|\nabla b_{t}(\cdot, \mu)(x)\right\|+\left|D^{L} b_{t}(x, \cdot)(\mu)(y)\right| \leq \kappa_{t}, \quad\left\|\tilde{\sigma}_{t}(\mu)-\tilde{\sigma}_{t}(\nu)\right\| \leq \kappa_{t} \mathbb{W}_{p}(\mu, \nu),
$$

and $\left|b_{t}\left(0, \delta_{0}\right)\right|+\left\|\sigma_{t}\right\|+\left\|\tilde{\sigma}_{t}\left(\delta_{0}\right)\right\| \leq \kappa_{t}$.
(H2) There exists a constant $\tilde{\kappa}>0$ such that
(i) for any $t, s \in[0, T], x, y, z_{1}, z_{2} \in \mathbb{R}^{d}, \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
& \left\|\nabla b_{t}(\cdot, \mu)(x)-\nabla b_{s}(\cdot, \nu)(y)\right\|+\left|D^{L} b_{t}(x, \cdot)(\mu)\left(z_{1}\right)-D^{L} b_{s}(y, \cdot)(\nu)\left(z_{2}\right)\right| \\
& \leq \tilde{\kappa}\left(|t-s|^{\alpha}+|x-y|^{\beta}+\left|z_{1}-z_{2}\right|^{\gamma}+\mathbb{W}_{p}(\mu, \nu)\right),
\end{aligned}
$$

where $\alpha \in(H-1 / 2,1]$ and $\beta, \gamma \in(1-1 /(2 H), 1]$.
(ii) $\sigma$ is invertible and $\sigma^{-1}$ is Hölder continuous of order $\delta \in(H-1 / 2,1]$ :

$$
\left\|\sigma^{-1}(t)-\sigma^{-1}(s)\right\| \leq \tilde{\kappa}|t-s|^{\delta}, \quad t, s \in[0, T] .
$$

## The non-degenerate case: Log-Harnack inequality

## Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Consider Eq. (2). If one of the two following assumptions holds:
(I) $H \in(1 / 2,1), b, \sigma, \tilde{\sigma}$ satisfy (H1'), (H2) and $p \geq 2(1+\beta)$;
(II) $H \in(0,1 / 2), b, \tilde{\sigma}$ satisfies (H1), $\sigma_{t}$ does not depend on $t$ and $p \geq 2$.

Then for any $t \in(0, T], \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $0<f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right)$,

$$
\left(P_{t} \log f\right)(\nu) \leq \log \left(P_{t} f\right)(\mu)+\varpi(H),
$$

where

$$
\varpi(H)= \begin{cases}C_{T, \kappa, \tilde{\kappa}, H, \tilde{H}}\left(1+\mathbb{W}_{p}(\mu, \nu)^{2 \beta}+\frac{1}{t^{2 H}}\right) \mathbb{W}_{p}(\mu, \nu)^{2}, & H \in(1 / 2,1) \\ C_{T, \kappa, H, \tilde{H}}\left(1+\frac{1}{t^{2 H}}\right) \mathbb{W}_{p}(\mu, \nu)^{2}, & H \in(0,1 / 2)\end{cases}
$$

## The non-degenerate case: Log-Harnack inequality

## Remark

The log-Harnack inequality obtained above is equivalent to the following entropy-cost estimate

$$
\operatorname{Ent}\left(P_{t}^{*} \nu \mid P_{t}^{*} \mu\right) \leq \varpi(H), \quad t \in(0, T], \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)
$$

where $\operatorname{Ent}\left(P_{t}^{*} \nu \mid P_{t}^{*} \mu\right)$ is the relative entropy of $P_{t}^{*} \nu$ with respect to $P_{t}^{*} \mu$ and $p$ is given as in the theorem above.

Facts needed in the proof of the theorem:

- $\mathcal{H}$ : the reproducing kernel Hilbert space

$$
K_{H}^{*}: \mathcal{H} \rightarrow L^{2}\left([0, T], \mathbb{R}^{d}\right), K_{H}: L^{2}\left([0, T], \mathbb{R}^{d}\right) \rightarrow I_{0+}^{H+1 / 2}\left(L^{2}\left([0, T], \mathbb{R}^{d}\right)\right), R_{H}=K_{H} \circ K_{H}^{*}
$$

- $W$ is a $d$-dimensional Wiener process such that

$$
B_{t}^{H}=\int_{0}^{t} K_{H}(t, s) \mathrm{d} W_{s}, \quad t \in[0, T] .
$$

## The non-degenerate case: Log-Harnack inequality

## Sketch of the proof

- For fixed $t_{0} \in(0, T]$, consider the following coupling DDSDE: $t \in\left[0, t_{0}\right]$,

$$
\begin{equation*}
\mathrm{d} Y_{t}=\left[b_{t}\left(X_{t}^{\mu}, P_{t}^{*} \mu\right)+\frac{1}{t_{0}}\left(X_{0}^{\mu}-X_{0}^{\nu}+\varrho_{t_{0}}^{\mu}-\varrho_{t_{0}}^{\nu}\right)\right] \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}+\tilde{\sigma}_{t}\left(P_{t}^{*} \nu\right) \mathrm{d} \tilde{B}_{t}^{\tilde{T}}, \quad Y_{0}=X_{0}^{\nu} \tag{3}
\end{equation*}
$$

- Let $\bar{Y}_{t}=Y_{t}-\varrho_{t}^{\nu}$ and rewrite (3) as

$$
\mathrm{d} \bar{Y}_{t}=b_{t}\left(\bar{Y}_{t}+\varrho_{t}^{\nu}, P_{t}^{*} \nu\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} \overline{\mathrm{~B}}_{t}^{H}, \quad t \in\left[0, t_{0}\right], \quad \bar{Y}_{0}=Y_{0}=X_{0}^{\nu},
$$

where

$$
\bar{B}_{t}^{H}:=B_{t}^{H}-\int_{0}^{t} \sigma_{s}^{-1} \zeta_{s} \mathrm{~d} s=\int_{0}^{t} K_{H}(t, s)\left(\mathrm{d} W_{s}-K_{H}^{-1}\left(\int_{0}^{\cdot} \sigma_{r}^{-1} \zeta_{r} \mathrm{~d} r\right)(s) \mathrm{d} s\right)
$$

with

$$
\zeta_{s}:=b_{s}\left(Y_{s}, P_{s}^{*} \nu\right)-b_{s}\left(X_{s}^{\mu}, P_{s}^{*} \mu\right)-\frac{1}{t_{0}}\left(X_{0}^{\mu}-X_{0}^{\nu}+\varrho_{t_{0}}^{\mu}-\varrho_{t_{0}}^{\nu}\right) .
$$

- $\left.\mathscr{L}_{\bar{Y}_{t_{0}}}\right|_{R^{\tilde{H}, 0} \mathrm{dP}^{\tilde{H}}, 0}=\left.\mathscr{L}_{\tilde{X}_{t_{0}}^{\nu}}\right|_{\mathbb{P} \tilde{H}, 0}$, where $\bar{X}^{\nu}:=X^{\nu}-\varrho^{\nu}$. satisfies SDE

$$
\mathrm{d} \bar{X}_{t}^{\nu}=b_{t}\left(\bar{X}_{t}^{\nu}+\varrho_{t}^{\nu}, P_{t}^{*} \nu\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}, \quad t \in\left[0, t_{0}\right], \quad \bar{X}_{0}^{\nu}=X_{0}^{\nu} .
$$

Then, the law of $Y_{t_{0}}=\bar{Y}_{t_{0}}+\varrho_{t_{0}}^{\nu}$ under $R^{\tilde{H}, 0} \mathrm{~d} \mathbb{P}^{\tilde{H}, 0}$ is the same as one of $X_{t_{0}}^{\nu}=\bar{X}_{t_{0}}^{\nu}+\varrho_{t_{0}}^{\nu}$ under $\mathbb{P}^{\tilde{H}, 0}$.

## The non-degenerate case: Bismut formula

Bismut formula for the $L$-derivative of (2):
For every $t \in(0, T], \mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $\phi \in L^{p}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \mu\right)$, we are to find an integrable random variable $M_{t}(\mu, \phi)$ such that

$$
D_{\phi}^{L}\left(P_{t} f\right)(\mu)=\mathbb{E}\left(f\left(X_{t}^{\mu}\right) M_{t}(\mu, \phi)\right), f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right)
$$

For any $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$, let $\left(X_{t}^{\mu}\right)_{t \in[0, T]}$ be the solution to (2) with $\mathscr{L}_{X_{0}^{\mu}}=\mu$ and $P_{t}^{*} \mu=\mathscr{L}_{X_{t}^{\mu}}$ for every $t \in[0, T]$.
For any $\varepsilon \in[0,1]$ and $\phi \in L^{p}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \mu\right)$, let $X_{t}^{\mu_{\varepsilon, \phi}}$ denote the solution of (2) with $X_{0}^{\mu_{\varepsilon, \phi}}=(\operatorname{Id}+\varepsilon \phi)\left(X_{0}^{\mu}\right), \mu_{\varepsilon, \phi}:=\mathscr{L}_{(\mathrm{Id}+\varepsilon \phi)\left(X_{0}^{\mu}\right)}$.

Introduce the spatial derivative of $X_{t}^{\mu}$ along $\phi$ :

$$
\nabla_{\phi} X_{t}^{\mu}:=\lim _{\varepsilon \rightarrow 0} \frac{X_{t}^{\mu_{\varepsilon, \phi}}-X_{t}^{\mu}}{\varepsilon}, t \in[0, T], \phi \in L^{p}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \mu\right) .
$$

## Assumptions

(H3) There exists a non-decreasing function $\kappa$. such that

$$
\left|D^{L} \tilde{\sigma}_{t}(\mu)(x)\right| \leq \kappa_{t}, \quad t \in[0, T], x \in \mathbb{R}^{d}, \mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)
$$

## The non-degenerate case: Bismut formula

## Lemma

Assume that (H1'), (H3) hold and $\sigma_{t}$ does not depend on $t$ if $H \in(0,1 / 2)$. For any $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $\phi \in L^{p}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \mu\right)$ with $p>\max \{1 / H, 1 / \tilde{H}\}$ if $H \in(1 / 2,1)$ or $p>1 / \tilde{H}$ if $H \in(0,1 / 2)$, then the following assertions hold.
(i) $\nabla_{\phi} X^{\mu}$ exists in $L^{p}\left(\Omega \rightarrow C\left([0, T] ; \mathbb{R}^{d}\right), \mathbb{P}\right)$ such that $\nabla_{\phi} X^{\mu}$ is the unique solution of the following linear SDE

$$
\begin{aligned}
\mathrm{d} G_{t}^{\phi}= & {\left[\nabla_{G_{t}^{\phi}} b_{t}\left(\cdot, \mathscr{L}_{X_{t}^{\mu}}\right)\left(X_{t}^{\mu}\right)+\left.\left(\mathbb{E}\left\langle D^{L} b_{t}(y, \cdot)\left(\mathscr{L}_{X_{t}^{\mu}}\right)\left(X_{t}^{\mu}\right), G_{t}^{\phi}\right\rangle\right)\right|_{y=X_{t}^{\mu}}\right] \mathrm{d} t } \\
& +\mathbb{E}\left\langle D^{L} \tilde{\sigma}_{t}\left(\mathscr{L}_{X_{t}^{\mu}}\right)\left(X_{t}^{\mu}\right), G_{t}^{\phi}\right\rangle \mathrm{d} \tilde{B}_{t}^{\tilde{H}}, G_{0}^{\phi}=\phi\left(X_{0}^{\mu}\right),
\end{aligned}
$$

and

$$
\mathbb{E}\left(\sup _{t \in[0, T]}\left|\nabla_{\phi} X_{t}^{\mu}\right|^{p}\right) \leq C_{p, T, \kappa, H, \tilde{H}}\|\phi\|_{L^{p}(\mu)}^{p} .
$$

(ii) It holds

$$
\lim _{\varepsilon \downarrow 0} \mathbb{E}\left(\sup _{s \in[0, t]}\left|\frac{\varrho_{s}^{\mu_{\varepsilon, \phi}}-\varrho_{s}^{\mu}}{\varepsilon}-\Lambda_{s}\right|^{p}\right)=0
$$

where $\Lambda$. is defined as

$$
\Lambda_{s}:=\int_{0}^{s}\left\langle\mathbb{E}\left[\left\langle D^{L} \tilde{\sigma}_{r}\left(P_{r}^{*} \mu\right)\left(X_{r}^{\mu}\right), \nabla_{\phi} X_{r}^{\mu}\right\rangle\right], \mathrm{d} \tilde{B}_{r}^{\tilde{H}}\right\rangle, s \in[0, T]
$$

## The non-degenerate case: Bismut formula

## Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Consider Eq. (2). If one of the two following assumptions holds:
(I) $H \in(1 / 2,1), b, \sigma, \tilde{\sigma}$ satisfy (H1'), (H2) and (H3);
(II) $H \in(0,1 / 2), b, \tilde{\sigma}$ satisfies (H1'), (H3) and $\sigma_{t}$ does not depend on $t$,
then for any $t \in(0, T], f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right), \mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $\phi \in L^{p}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \mu\right)$ with $p \geq 2(1+\beta)$ if $H \in(1 / 2,1)$ or $p \geq 2$ if $H \in(0,1 / 2), D_{\phi}^{L}\left(P_{f} f\right)(\mu)$ exists and satisfies

$$
\begin{equation*}
D_{\phi}^{L}\left(P_{t} f\right)(\mu)=\mathbb{E}\left(f\left(X_{t}^{\mu}\right) \int_{0}^{t}\left\langle K_{H}^{-1}\left(\int_{0}^{.} \sigma_{r}^{-1} \Upsilon_{r, t} \mathrm{~d} r\right)(s), \mathrm{d} W_{s}\right\rangle\right), \tag{4}
\end{equation*}
$$

where $\Upsilon_{\text {, }}$, is given by

$$
\begin{aligned}
\Upsilon_{r, t}= & \frac{\phi\left(X_{0}^{\mu}\right)+\Lambda_{t}}{t}+\nabla b_{r}\left(\cdot, P_{r}^{*} \mu\right)\left(X_{r}^{\mu}\right)\left(\frac{t-r}{t} \phi\left(X_{0}^{\mu}\right)-\frac{r}{t} \Lambda_{t}+\Lambda_{r}\right) \\
& +\left.\mathbb{E}\left[\left\langle D^{L} b_{r}(x, \cdot)\left(P_{r}^{*} \mu\right)\left(X_{r}^{\mu}\right), \nabla_{\phi} X_{r}^{\mu}\right\rangle\right]\right|_{x=X_{r}^{\mu}}, \quad 0 \leq r<t \leq T
\end{aligned}
$$

with $\Lambda$. defined in the lemma above.

## The non-degenerate case: Bismut formula

## Remark

(i) The term $K_{H}^{-1}\left(\int_{0} \sigma_{r}^{-1} \Upsilon_{r, t} \mathrm{~d} r\right)(s)$ on the right-hand side of (4) can rewrite as follows

$$
K_{H}^{-1}\left(\int_{0}^{.} \sigma_{r}^{-1} \Upsilon_{r, t} \mathrm{~d} r\right)(s)=\left\{\begin{array}{l}
\frac{\left(H-\frac{1}{2}\right) s^{H-\frac{1}{2}}}{\Gamma\left(\frac{3}{2}-H\right)}\left[\frac{s^{1-2 H} \sigma_{s}^{-1} \Upsilon_{s, t}}{H-\frac{1}{2}}+\sigma_{s}^{-1} \Upsilon_{s, t} \int_{0}^{s} \frac{s^{\frac{1}{2}-H}-r^{\frac{1}{2}-H}}{(s-r)^{\frac{1}{2}+H}} \mathrm{~d} r+\right. \\
\left.\Upsilon_{s, t} \int_{0}^{s} \frac{\left(\sigma_{s}^{-1}-\sigma_{r}^{-1}\right) r^{\frac{1}{2}-H}}{(s-r)^{\frac{1}{2}+H}} \mathrm{~d} r+\int_{0}^{s} \frac{\left(\Upsilon_{s, t}-\Upsilon_{r, t}\right) \sigma_{r}^{-1} r^{\frac{1}{2}-H}}{(s-r)^{\frac{1}{2}+H}} \mathrm{~d} r\right], H \in\left(\frac{1}{2}, 1\right), \\
\frac{\sigma^{-1}{ }_{s} H-\frac{1}{2}}{\Gamma\left(\frac{1}{2}-H\right)} \int_{0}^{s} \frac{r^{\frac{1}{2}-H} \Upsilon_{r, t}}{(s-r)^{\frac{1}{2}+H}} \mathrm{~d} r,
\end{array} \quad H \in\left(0, \frac{1}{2}\right) .\right.
$$

(ii) The estimate of the $L$-derivative: for any $t \in(0, T], f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right), \mu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$,

$$
\left\|D^{L}\left(P_{t} f\right)(\mu)\right\|_{L_{\mu}^{p^{*}}} \leq C_{T, \kappa, \tilde{\kappa}, H, \tilde{H}}\left(1+\frac{1}{t^{H}}\right)\left(\left(P_{t}|f|^{p^{*}}\right)(\mu)\right)^{\frac{1}{p^{*}}}
$$

where $C_{T, \kappa, \tilde{\kappa}, H, \tilde{H}}$ is a positive constant which is independent of $\tilde{\kappa}$ when $H \in(0,1 / 2)$, and $p \geq 2(1+\beta)$ if $H \in(1 / 2,1)$ or $p \geq 2$ if $H \in(0,1 / 2)$.

## The degenerate case: Log-Harnack inequality

Let $A$ and $B$ be two matrices of order $m \times m$ and $m \times l$, we now consider the following distribution dependent degenerate SDE:

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}^{(1)}=\left(A X_{t}^{(1)}+B X_{t}^{(2)}\right) \mathrm{d} t,  \tag{5}\\
\mathrm{~d} X_{t}^{(2)}=b_{t}\left(X_{t}, \mathscr{L}_{X_{t}}\right) \mathrm{d} t+\sigma_{t} \mathrm{~d} B_{t}^{H}+\tilde{\sigma}_{t}\left(X_{t}\right) \mathrm{d} \tilde{B}_{t}^{\tilde{H}},
\end{array}\right.
$$

where $X_{t}=\left(X_{t}^{(1)}, X_{t}^{(2)}\right), b:[0, T] \times \mathbb{R}^{m+l} \times \mathscr{P}_{p}\left(\mathbb{R}^{m+l}\right) \rightarrow \mathbb{R}^{l}, \sigma(t)$ is an invertible $l \times l$-matrix for every $t \in[0, T], \tilde{\sigma}:[0, T] \times \mathscr{P}_{p}\left(\mathbb{R}^{m+l}\right) \rightarrow \mathbb{R}^{l} \otimes \mathbb{R}^{l}$ are measurable.

To establish the log-Harnack inequality, we let

$$
\begin{equation*}
U_{t}=\int_{0}^{t} \frac{s(t-s)}{t^{2}} \mathrm{e}^{-s A} B B^{*} \mathrm{e}^{-s A^{*}} \mathrm{~d} s \geq \ell(t) \mathbf{I}_{m \times m}, t \in(0, T] \tag{6}
\end{equation*}
$$

where $\ell \in C([0, T])$ satisfies $\ell(t)>0$ for any $t \in(0, T]$ and $\mathrm{I}_{m \times m}$ is the $m \times m$ identity matrix. It is obvious that $U_{t}$ is invertible with $\left\|U_{t}^{-1}\right\| \leq 1 / \ell(t)$ for every $t \in(0, T]$.

## The degenerate case: Log-Harnack inequality

## Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Consider Eq. (5). Assume (6) and if one of the two following assumptions holds:
(I) $H \in(1 / 2,1), b, \sigma, \tilde{\sigma}$ satisfy (H1') and (H2) with $d=m+l$, and $p \geq 2(1+\beta)$;
(II) $H \in(0,1 / 2), b, \tilde{\sigma}$ satisfies (H1) with $d=m+l$, $\sigma_{t}$ does not depend on $t$ and $p \geq 2$.

Then for any $t \in(0, T], \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{m+l}\right)$ and $0<f \in \mathscr{B}_{b}\left(\mathbb{R}^{m+l}\right)$,

$$
\left(P_{t} \log f\right)(\nu) \leq \log \left(P_{t} f\right)(\mu)+\chi(H),
$$

where

$$
\chi(H)= \begin{cases}C_{T, \kappa, \tilde{\kappa}, H, \tilde{H}}\left(1+\mathbb{W}_{p}(\mu, \nu)^{2 \beta}+\frac{1}{t^{2 H}}+\frac{1}{\ell^{2}(t)}+\frac{1}{t^{2} H \ell^{2}(t)}\right) \mathbb{W}_{p}(\mu, \nu)^{2}, & H \in(1 / 2,1), \\ C_{T, \kappa, H, \tilde{H}}\left(1+\frac{1}{t^{2 H}}+\frac{1}{\ell^{2}(t)}+\frac{1}{t^{2} H \ell^{2}(t)}\right) \mathbb{W}_{p}(\mu, \nu)^{2}, & H \in(0,1 / 2) .\end{cases}
$$

## The degenerate case: Bismut formula

## Theorem (Fan-Huang-Ling, arXiv:2304.00768)

Consider Eq. (5). Assume (6) and if one of the two following assumptions holds:
(I) $H \in(1 / 2,1), b, \sigma, \tilde{\sigma}$ satisfy (H1'), (H2) and (H3);
(II) $H \in(0,1 / 2), b, \tilde{\sigma}$ satisfies (H1'), (H3) with $d=m+l, \sigma_{t}$ does not depend on $t$, then for any $t \in(0, T], f \in \mathscr{B}_{b}\left(\mathbb{R}^{m+l}\right), \phi \in L^{p}\left(\mathbb{R}^{m+l} \rightarrow \mathbb{R}^{m+l}, \mu\right)$ and $\mu \in \mathscr{P}_{p}\left(\mathbb{R}^{m+l}\right)$ with $p \geq 2(1+\beta)$ if $H \in(1 / 2,1)$ or $p \geq 2$ if $H \in(0,1 / 2), D_{\phi}^{L}\left(P_{T f}\right)(\mu)$ exists and satisfies

$$
D_{\phi}^{L}\left(P_{t} f\right)(\mu)=\mathbb{E}\left(f\left(X_{t}^{\mu}\right) \int_{0}^{t}\left\langle K_{H}^{-1}\left(\int_{0}^{.} \sigma_{r}^{-1} \Theta_{r, t} \mathrm{~d} r\right)(s), \mathrm{d} W_{s}\right\rangle\right),
$$

where $\Theta_{\text {.,. }}$ is defined as

$$
\Theta_{s, t}=\nabla b_{s}\left(\cdot, P_{s}^{*} \mu\right)\left(X_{s}^{\mu}\right) \hbar_{s, t}+\left.\mathbb{E}\left[\left\langle D^{L} b_{s}(x, \cdot)\left(P_{s}^{*} \mu\right)\left(X_{s}^{\mu}\right), \nabla_{\phi} X_{s}^{\mu}\right\rangle\right]\right|_{x=X_{s}^{\mu}}-\left(\Xi_{t}\right)^{\prime}(s) .
$$

with

$$
\begin{aligned}
\hbar_{s, t}:= & \left(\mathrm{e}^{s A} \phi^{(1)}\left(X_{0}^{\mu}\right)+\int_{0}^{s} \mathrm{e}^{(s-r) A} B\left(\phi^{(2)}\left(X_{0}^{\mu}\right)+\Xi_{t}(r)+\Lambda_{r}\right) \mathrm{d} r, \phi^{(2)}\left(X_{0}^{\mu}\right)+\Xi_{t}(s)+\Lambda_{s}\right) \\
\Xi_{t}(s):= & -\frac{s}{t_{0}}\left(\phi^{(2)}\left(X_{0}^{\mu}\right)+\Lambda_{t}\right)-\frac{s(t-s)}{t^{2}} B^{*} \mathrm{e}^{-s A^{*}} U_{t}^{-1} \phi^{(1)}\left(X_{0}^{\mu}\right) \\
& -\frac{s(t-s)}{t^{2}} B^{*} \mathrm{e}^{-s A^{*}} U_{t}^{-1} \int_{0}^{t_{0}} \mathrm{e}^{-r A} B\left[\frac{t-r}{t_{0}} \phi^{(2)}\left(X_{0}^{\mu}\right)-\frac{r}{t_{0}} \Lambda_{t}+\Lambda_{r}\right] \mathrm{d} r .
\end{aligned}
$$

## The degenerate case: Bismut formula

## Remark

The entropy-cost and intrinsic derivative estimates:
For any $t \in(0, T], \mu, \nu \in \mathscr{P}_{p}\left(\mathbb{R}^{d}\right)$ and $f \in \mathscr{B}_{b}\left(\mathbb{R}^{d}\right)$,

$$
\operatorname{Ent}\left(P_{t}^{*} \nu \mid P_{t}^{*} \mu\right) \leq \chi(H)
$$

and

$$
\left\|D^{L}\left(P_{t} f\right)(\mu)\right\|_{L_{\mu}^{p^{*}}} \leq C_{T, \kappa, \tilde{\kappa}, H, \tilde{H}}\left(1+\frac{1}{t^{H}}+\frac{1}{\ell(t)}+\frac{1}{t^{H} \ell(t)}\right)\left(\left(P_{t}|f|^{p^{*}}\right)(\mu)\right)^{\frac{1}{p^{*}}}
$$

where $C_{T, \kappa, \tilde{\kappa}, H, \tilde{H}}$ is a positive constant which is independent of $\tilde{\kappa}$ when $H \in(0,1 / 2)$, and $p \geq 2(1+\beta)$ if $H \in(1 / 2,1)$ or $p \geq 2$ if $H \in(0,1 / 2)$.

To guarantee (6) holds, one needs to impose some non-degeneracy condition on the matrix $B$. For instance, assume the following Kalman rank condition:

$$
\begin{equation*}
\operatorname{Rank}\left[B, A B, \cdots, A^{k} B\right]=m \tag{7}
\end{equation*}
$$

holds for some integer number $k \in[0, m-1]$ (in particular, if $k=0$, (7) reduces to $\operatorname{Rank}[B]=m$ ), then (6) is satisfied with $\ell(t)=C(t \wedge 1)^{2 k+1}$ for positive constant $C$.

## Further problems and main references

## Further problems

- Well-posedness in multiplicative case
- Chaos propogation


## Main references

(1) D. Baños, The Bismut-Elworthy-Li formula for mean-field stochastic differential equations, AIHP, 2018.
(2) J.H. Bao, P.P. Ren and F.-Y. Wang, Bismut formula for Lions derivative of distribution-path dependent SDEs, JDE, 2021.
(3) X. Huang and F.-Y. Wang, Regularities and exponential ergodicity in entropy for SDEs driven by distribution dependent noise, arXiv:2209.14619.
4) P.P. Ren and F.-Y. Wang, Bismut formula for Lions derivative of distribution dependent SDEs and applications, JDE, 2019.
(5) F.-Y. Wang, Distribution dependent SDEs for Landau type equations, SPA, 2018.
(6) F.-Y. Wang and X.C. Zhang, Derivative formulae and applications for degenerate diffusion semigroups, JMPA, 2013.

## Thank you very much for your kind attention!

